\qquad

1. Evaluate $5 j$ when $j=7$.
a. 35
b. 40
c. 12
d. 84
2. Sally wants to plant some flowers in a cube-shaped planter box. If one edge of the box measures 10 inches, how much soil will be needed to fill the planter?
a. $\quad 1000$ in. 3
b. $100 \mathrm{in}^{3}{ }^{3}$
c. 333 in. ${ }^{3}$
d. 600 in $^{3}{ }^{3}$
3. Complete the input-output table for the function $y=2 x-3$.

Input	Output
2	$?$
$?$	5
3	$?$
$?$	9

a. Input Output

2	3
4	5
3	4
6	9

c. Input Output

2	1
5	5
3	3
6	9

b. Input Output

2	1
4	5
3	3
6	9

d. Input Output

2	1
4	5
3	3
8	9

4. Make an input-output table for the function $y=2 x+4$. Use x-values of $1,2,3,4$, and 5 .
a.

Input, x	1	2	3	4	5
Output, y	6	8	10	12	14

c.

Input, x	1	2	3	4	5
Output, y	6	16	36	76	156

b.

Input, x	1	2	3	4	5
Output, y	5	7	9	11	13

d.

Input, x	1	2	3	4	5
Output, y	5	6	7	8	9

5. Which function rule matches the input-output table?

Input, x	1	2	3	4	5
Output, y	7	11	15	19	23

a. $y=3+5 x$
b. $y=3+4 x$
c. $y=4+3 x$
d. $y=2+4 x$
6.A bag of chips costs $\$ 2.33$. Your total grocery bill, b, is a function of the number of bags of chips, n, you purchase.

Write an equation to represent this function.
a. $n=2.33 b$
c. $\frac{b}{2.33}=n$
b. $b=\frac{2.33}{n}$
d. $b=2.33 n$
7. Which equation corresponds to the values in the table below?

Input, x	1	2	3	4	5
Output, y	17	26	35	44	53

a. $y=8 x+9$
b. $y=9 x+7$
c. $y=9 x+8$
d. $y=10 x+8$
8. For which value of x is the relation not a function?
$\{(0,1),(x, 0),(3,5),(2,6)\}$
a. 1
b. 3
c. 4
d. 6
9. Find the slope of the line passing through the points $A(-1,1)$ and $B(4,-5)$.
a. $-\frac{6}{5}$
b. 4
c. 3
d. $-\frac{5}{6}$
10. Find the slope of the line that contains $(-8,2)$ and $(7,-4)$.
a. $-\frac{2}{5}$
b. $\begin{array}{r}5 \\ -2\end{array}$
c. 0
d. undefined
11. What is the y-intercept of the line with the equation $4 x+9 y=-108$?
a. -12
b. 12
c. -27
d. 27
12. State the x - and y-intercepts of the line with the equation $y=-2 x+4$.
a. x-intercept: $4 ; y$-intercept: 2
b. x-intercept: $2 ; y$-intercept: 4
c. x-intercept: $-4 ; y$-intercept: -2
d. x-intercept: $-2 ; y$-intercept: -4
13. Find the slope and y-intercept of the line with the equation $-9 x+3 y=54$.
a. $\quad m=3, b=18$
b. $m=18, b=3$
c. $m=-3, b=-18$
d. $m=-18, b=-3$

Consider lines whose equations have the form $y=m x+20$. Find the difference of the x-intercepts of lines l_{1} and l_{2} if their slopes are m_{1} and m_{2}, respectively.
14. Which statement is always a correct conclusion about the values of x and y in the function $y=x-3$?
a. The value of x is always 3 less than the value of y.
b. The value of y is always less than the value of x.
c. When the value of x is positive, the value of y is also positive.
d. As the value of x increases, the value of y decreases.
15.Write the polynomial so that the exponents decrease from left to right.
$6 x^{3}-6 x+4 x^{5}-2$
a. $4 x^{5}+6 x^{3}-6 x-2$
b. $-2+4 x^{5}-6 x+6 x^{3}$
c. $-4 x^{5}-6 x^{3}+6 x+2$
d. $2-4 x^{5}+6 x-6 x^{3}$
16. Find the degree of the polynomial $-3 x^{4}+2 x^{3}+7$.
a. 4
b. 1
c. 6
d. 7
17. A monthly phone bill, $b(m)$, consists of a $\$ 28$ service fee plus $\$ 0.13$ per minute, m, of long distance calls, given by the function $b(m)=28+0.13 m$.
Draw a graph for up to and including 120 minutes of long distance calls made in a month. Estimate the bill if 84 minutes of long distance calls are made.
a. a.

c. a.

b. $\$ 20$
b. $\$ 39$
b. a.

d. a.

b. $\$ 45$
18. Classify the expression $-9 v^{9}-7$ and state its degree.
a. binomial, 9
c. trinomial, 9
b. binomial, 10
d. trinomial, 10
19.Employees earn $\$ 5$ per hour plus $\$ 0.75$ for every unit they produce per hour. Which of the following shows both an equation in which y represents the employee's wages for producing x units per hour, and the graph of the wages
earned for producing $2,5,8$, and 10 units per hour?
a. $\quad y=5+0.75 x$

c. $y=5 x+0.75$

b. $y=5 x+0.75$
d. $y=5+0.75 x$

Find the sum.

20. $\left(2 a^{7}+3 a^{3}-6\right)+\left(-2 a^{3}+4+6 a^{7}\right)$
a. $8 a^{7}+a^{3}-2$
b. $a^{7}+8 a^{3}-2$
c. $a^{7}+8 a^{3}+2$
d. $8 a^{7}+a^{3}+2$

Simplify the expression.

21. $\left(5 q^{5}+4\right)-\left(2 q^{3}+9\right)+\left(6 q^{5}-q^{3}\right)$
a. $11 q^{5}-3 q^{3}-5$
b. $-3 q^{5}+11 q^{3}-5$
c. $11 q^{3}+3 q^{5}+5$
d. $11 q^{5}+3 q^{3}+5$
22. Graph the linear equation $3 x+6 y=18$ by finding the x - and y-intercepts.
a.

c.

b.

d.

23. Determine the slope of the line graphed below.

a. 0
b. -3
c. $-\frac{1}{3}$
d. undefined

Find the difference.
24. $\left(6 b^{3}+3 b^{2}+8\right)-\left(2 b^{3}-8 b^{2}+6 b-5\right)$
a. $4 b^{3}+11 b^{2}-6 b+13$
b. $4 b^{3}+11 b^{2}+6 b-13$
c. $11 b^{3}-4 b^{2}-6 b+3$
d. $11 b^{3}+4 b^{2}-6 b-3$
25. $\left(-4 z^{4}-4 z^{3}-6\right)-\left(-6 z^{4}-7 z^{3}-3\right)$
a. $2 z^{4}+3 z^{3}-3$
b. $-10 z^{4}-11 z^{3}-9$
c. $10 z^{4}+11 z^{3}+9$
d. $-2 z^{4}-3 z^{3}+3$
26. A rectangle has a length of $x+5$ and a width of $x-7$. Write an equation that describes the area, A, of the rectangle in terms of x.
a. $A=x^{2}-2 x-35$
b. $A=x^{2}+12 x-35$
c. $A=2 x-2$
d. $A=2 x+12$

Find the product.
27. $(x+5)(x+2)$
a. $x^{2}+7 x+10$
b. $x^{2}-7 x-10$
c. $x^{2}-7 x+10$
d. $x^{2}+7 x-10$
28. $(4 x+1)(4 x-3)$
a. $16 x^{2}+8 x-3$
b. $16 x^{2}-8 x+3$
c. $16 x^{2}-8 x-3$
d. $16 x^{2}-16 x-3$
29. $(x+4)(x+7)$
a. $x^{2}+28$
b. $x^{2}+28 x+11$
c. $x^{2}+11 x+28$
d. $x^{2}+28 x+28$
30. $(x+5)\left(x^{2}-2 x+3\right)$
a. $x^{3}+3 x^{2}-7 x+15$
b. $x^{3}-2 x^{2}+15$
c. $x^{3}+3 x^{2}-10 x+15$
d. $x^{2}-3 x+15$
31. $(x+7)\left(x^{2}-4 x+2\right)$
a. $x^{3}+3 x^{2}-26 x+14$
b. $x^{3}+11 x^{2}-26 x+14$
c. $x^{3}+3 x^{2}-30 x+14$
d. $x^{3}+11 x^{2}-30 x+14$
32. $\left(6 y^{2}+3 y+2\right)(y-7)$
a. $6 y^{3}-39 y^{2}-19 y-14$
b. $6 y^{3}-45 y^{2}-19 y+14$
c. $6 y^{3}-39 y^{2}-21 y-14$
d. $6 y^{3}-45 y^{2}-21 y+14$
33. The equation $y=\frac{2}{5} x+3$ is graphed below. Which graph shows the result of changing the 3 in the equation to -1 ?

a.

c.

b.

d.

34. Write a variable expression for the area of the rectangle.

a. $(x-1)(x-3)$
b. $3(x+1)$
c. $(x+3)(x+1)$
d. $(x)(3 x)$
35. A rectangular garden, with length four times its width, is to be expanded so that both sides are increased by 3 yards.

Let x represent the original width of the garden. Write an expression that models the area of the expanded garden.
a. $5 x+6$
b. $4 x^{2}+6 x+9$
c. $4 x^{2}+9$
d. $4 x^{2}+15 x+9$

Find the product.

36. $\left(5 x^{2}-5\right)^{2}$
a. $25 x^{4}-25$
b. $25 x^{2}-10 x+25$
c. $25 x^{4}-50 x^{2}+25$
d. $25 x^{4}-50 x^{2}-25$
37. $(5 c+6)(5 c-6)$
a. $25 c^{2}-36$
b. $25 c^{2}+36$
c. $25 c^{2}+60 c-36$
d. $25 c^{2}+60 c+36$
38. $(2 v+5)(2 v-5)$
a. $4 v^{2}-25$
b. $4 v^{2}+25$
c. $4 v^{2}+20 v-25$
d. $4 v^{2}+20 v+25$

Find the missing term.

39. $(x+9)^{2}=x^{2}+18 x+$
a. 81
b. 27
c. 72
d. 90

Factor the polynomial.

40. $x^{2}+6 x+5$
a. $(x+1)(x-5)$
b. $(x-1)(x-5)$
c. $(x+1)(x+5)$
d. $(x-1)(x+5)$
41. The volume of a cylinder is given by the formula $V=\pi r^{2} h$, where r is the radius of the base of the cylinder and h is the height of the cylinder. If the radius of the cylinder is increased by 1 unit and the height remains the same, the ratio for the volume of the new cylinder to the volume of the original cylinder is $4: 1$. Find the length of the radius of the original cylinder.
a. 2 units
b. 1 unit
c. 3 units
d. 4 units

Solve the equation.

42. $16 g^{2}+40 g+25=0$
a. $g=-\frac{4}{5}$
b. $g=\frac{4}{5}$
c. $g=-\frac{5}{4}$
d. $g=\frac{5}{4}$

Solve the equation.

43. $x^{3}+4 x^{2}-25 x-100=0$
a. $-4,25$
b. $-5,4,5$
c. 4,5
d. $-4,-5,5$
44. Graph $\quad y=x^{2}+6$
a.

c.

b.

d.

Solve the equation.

45. $25 x^{2}-9=0$
a. $-\frac{5}{3}, \frac{5}{3}$
b. $-\frac{3}{5}, \frac{3}{5}$
c. $-\frac{9}{25}, \frac{9}{25}$
d. $-\frac{25}{9}, \frac{25}{9}$
46. Sketch the graph of the equation $y=-3 x^{2}$.
a.

c.

b.

d.

47. How would you translate the graph of $y=-x^{2}$ to produce the graph of $y=-x^{2}-4$?
a. translate the graph of $y=-x^{2}$ down 4 units
b. translate the graph of $y=-x^{2}$ up 4 units
c. translate the graph of $y=-x^{2}$ left 4 units
d. translate the graph of $y=-x^{2}$ right 4 units
48. Predict how the graph of the equation $y=7 x^{2}$ will compare with the graph of the equation $y=x^{2}$.
a. The graph of $y=7 x^{2}$ will open down because coefficient is positive. The graph will be narrower because 7 is greater than 1 .
b. The graph of $y=7 x^{2}$ will open up because the coefficient is positive. The graph will be narrower because 7 is greater than 1 .
c. The graph of $y=7 x^{2}$ will open down because coefficient is positive. The graph will be wider because 7 is greater than 1 .
d. The graph of $y=7 x^{2}$ will open up because the coefficient is positive. The graph will be wider because 7 is greater than 1 .
49. Sketch the graph of the equation $y=0.75 x^{2}$.
a.

c.

b.

d.

50. Sketch the graph of the equation $y=-\frac{5}{7} x^{2}$.
a.

c.

b.

d.

51. How would you change the graph of $y=x^{2}$ to produce the graph of $y=x^{2}-5$?
a. shift the graph of $y=x^{2}$ right 5 units
b. shift the graph of $y=x^{2}$ down 5 units
c. shift the graph of $y=x^{2}$ up 5 units
d. shift the graph of $y=x^{2}$ left 5 units

Graph:

52. $y=4 x^{2}+5 x+4$
a.

c.

b.

d.

53. When does the equation $x^{2}=d$ have no solutions?
a. always
b. when $d<0$
c. never
d. when $d>0$

Simplify:

54. $\sqrt{300}$
a. $10 \sqrt{30}$
b. $10 \sqrt{3}$
c. $\sqrt{30}$
d. $3 \sqrt{10}$
55. $\sqrt{200}$
a. $10 \sqrt{2}$
b. $5 \sqrt{2}$
c. $50 \sqrt{2}$
d. $20 \sqrt{2}$
56.Graph the parabola: $y=-x^{2}+3 x-1$
a.

c.

b.

d.

Graph:

57. $f(x)=\sqrt{x}-1$
a.

c.

b.

d.

58. Graph the radical function $y=\sqrt{x-1}$ and then find the domain and range.
a.

c.

Domain: $x \geq 1$; Range: $y \geq 0$
b.

Domain: $x \geq-1$; Range: $y \geq 0$
d.

Domain: $x \geq 0$; Range: $y \geq 1$

Simplify:

59. $\sqrt{\frac{49}{100}}$
a. $\frac{7}{50}$
b. $\frac{3}{4}$
c. $\frac{7}{100}$
d. $\frac{7}{10}$
60. What is the simplified form of $2 \sqrt{7}-(-8 \sqrt{7})-3 \sqrt{7}$?
a. $13 \sqrt{7}$
b. 49
c. $7 \sqrt{7}$
d. $\sqrt{49}$
61.Which function matches the graph?

a. $f(x)=\sqrt{x+4}+4$
b. $f(x)=\sqrt{x-4}+4$
c. $f(x)=\sqrt{x-4}-4$
d. $f(x)=\sqrt{x+4}-4$

Simplify:
62. $\sqrt{10} \cdot \sqrt{4}$
a. $2 \sqrt{ } 10$
b. $4 \sqrt{ } 5$
c. $2 \sqrt{ } 5$
d. $\sqrt{40}$
63. $\sqrt{30} \cdot \sqrt{12}$
a. $9 \sqrt{20}$
b. $12 \sqrt{10}$
c. $6 \sqrt{10}$
d. $3 \sqrt{40}$
64. $11 \sqrt{25}$
a. 137.5
b. 16
c. 55
d. 27.5

Simplify:
65. $7 \sqrt{6}+8 \sqrt{6}-3 \sqrt{6}$
a. $\sqrt{72}$
b. $12 \sqrt{6}$
c. 72
d. $18 \sqrt{6}$
66. $\sqrt{32}+\sqrt{72}$
a. $2 \sqrt{10}$
b. $46 \sqrt{2}$
c. $\sqrt{104}$
d. $10 \sqrt{2}$
67. $2 \sqrt{6}-\sqrt{81}-4 \sqrt{24}$
a. $-6 \sqrt{6}-9$
b. $-11 \sqrt{6}-9-4 \sqrt{24}$
c. $-5 \sqrt{24}$
d. $-15 \sqrt{6}$
68.A bridge over a stream in a garden is to be braced as shown in the figure below. The contractor determines that each of the identical braces must be $3 \sqrt{2}$ feet long.

What is the approximate total length of all 4 braces?
a. 8.5 feet
b. $\quad 17.0$ feet
c. 24.0 feet
d. 9.8 feet
69. Simplify the expression $\sqrt{500}$.
a. $50 \sqrt{10}$
b. $10 \sqrt{5}$
c. $5 \sqrt{10}$
d. $10 \sqrt{50}$

Solve:
70. $\sqrt{x+3}=-6$
a. 33
c. no real number solutions
b. $33,-39$
d. -39

Solve:
71. $\sqrt{x+9}-9=2$
a. 112
b. no solution
c. -68
d. -16
72. $\sqrt{6 x+4}=25$
a. 207
c. 207209
2
2, 2
b. 1
d. 599
6
6
73. $\sqrt{x+72}=x$
a. 9
b. no solution
c. $9,-8$
d. -8
74. Graph the rational function $f(x)=\frac{1}{x-1}$. Then find its domain and range.
a.

Domain: all real numbers except 1
Range: all real numbers except 1
b.

Domain: all real numbers except -1
Range: all real numbers except 0
c.

Domain: all real numbers except -1 Range: all real numbers except 1
d.

Domain: all real numbers except 1
Range: all real numbers except 0

Divide:

75. $\frac{x^{2}+5 x+3}{x}$
a. $x+5+\frac{3}{x}$
b. $x+5$
c. $x^{2}+5+\frac{3}{x}$
d. $x+3$
76. $\left(k^{3}+8\right) \div(k+2)$
a. $k^{2}-2 k+4$
b. $k^{2}-4$
c. $k^{2}+8 k+4$
d. $k^{2}+4$
77. $\frac{b^{2}-3 b+3}{b-5}$
a. $2 b-2+\frac{7}{b-5}$
b. $b+2+\frac{13}{b-5}$
c. $b-8+\frac{49}{b-5}$
d. $b+2+\frac{-13}{b-5}$
78. $\frac{d^{2}+5 d-5}{d+3}$
a. $d+2$, remainder -11
b. $d+2$, remainder 11
c. $d+8$, remainder 49
d. $2 d-2$, remainder -1
79. Divide $-2 x^{3}-4 x-3$ by $x-2$.
a. $-2 x^{2}-4 x-12-\frac{27}{x-2}$
b. $-2 x^{2}-4 x-13-\frac{25}{x-2}$
c. $-2 x^{2}-4 x-13-\frac{12}{x-2}$
d. $-2 x^{2}-4 x-12+\frac{27}{x-2}$
80. Divide $24 x^{2}-9 x^{3}+12-27 x$ by $3 x-5$.
a. $-3 x^{2}+3 x-4-\frac{8}{3 x-5}$
b. $-3 x^{2}+3 x-9-\frac{2}{x-5}$
c. $-3 x^{2}+3 x-9-\frac{16}{x-5}$
d. $-3 x^{2}+3 x-4+\frac{8}{x-5}$
81. Graph $f(x)=\frac{x-2}{x-1}$.
a.

c.

b.

d.

Simplify:

82. $\frac{-3 x+3 x^{2}}{-24 x+24}$
a. $-\frac{x}{8}$
b. $\frac{x-x^{2}}{8 x-8}$
c. $\frac{x^{2}}{16}$
d. $\frac{1-x}{16}$

Find the product.
83. $\frac{4 y^{2}}{3} \cdot \frac{9}{12 y}$
a. y
b. $\quad 2 y^{2} y^{2}$
c. $12 y$
d. 1
84. $(x-2) \cdot \frac{x+4}{x^{2}-4}$
a. $\frac{x+4}{x+2}$
b. $\frac{x+4}{(x-2)\left(x^{2}-4\right)}$
c. $\frac{x+4}{x-2}$
d. 2

Find the quotient.
85. $\frac{x+4}{x-4} \div \frac{x^{2}-16}{4-x}$
a. $\frac{x+4}{x-4}$
b. $\frac{1}{4-x}$
c. $\frac{1}{x-4}$
d. $\frac{1}{2-x}$

Find the difference.
86. $\frac{c+2}{d}-\frac{c-1}{d}$
a. $\frac{1}{d}$
b. $\frac{3}{d}$
c. $\frac{2 c+3}{d}$
d. $\frac{2 c+1}{d}$
87. $\frac{5}{x+3}-\frac{9}{x-3}$
a. $\frac{-4 x-42}{x^{2}-9}$
b. $\frac{-4}{x-3}$
c. $\frac{1}{x^{2}-9}$
d. $\frac{-4 x-42}{x+3}$
88. $\frac{5}{x^{2}-15 x+56}-\frac{2}{x-7}$
a. $\frac{3}{x^{2}-16 x+63}$
b. $\frac{-2 x-3}{x^{2}-15 x+56}$
c. $\frac{-2 x+21}{x^{2}-15 x+56}$
d. $\frac{-2 x-11}{x^{2}-15 x+56}$

Find the sum.

89. $\frac{4}{x+9}+\frac{3}{x-9}$
a. $\frac{7}{x+9}$
b. $\frac{7 x-9}{x^{2}-81}$
c. $\frac{7}{x^{2}-81}$
d. $\frac{7 x-9}{7}$
90. The production rate of a small factory is modeled by $\frac{x+21}{2 x(x+5)}$, while the production rate of another factory is modeled by $\frac{9 x+16}{2 x(x+5)}$. Which is a model for the combined production rate of the two factories?
a. $\frac{x+21}{9 x+16}$
b. $\frac{10 x+37}{2 x^{2}+10}$
c. $\frac{10 x+37}{2 x(x+5)}$
d. $\frac{9 x^{2}+37}{2 x^{2}+10}$

Solve the equation:

91. $\frac{x-6}{x-3}=\frac{x+8}{x-2}$
a. 36
c. 12
13
b. $\quad 12$
d. 4
92. $\frac{1}{w+3}-\frac{3}{w-2}=0$
a. 11
c. 11
b. $\begin{array}{r}7 \\ -7\end{array}$
d. none of these

Solve the equation and check your answer.
93. $\frac{x}{x-8}+\frac{6}{x-4}=\frac{x^{2}}{x^{2}-12 x+32}$
a. 20
b. 8
c. 24
d. 27
94. $\frac{x}{x^{2}-49}+\frac{7}{x-7}=\frac{1}{x+7}$
a. -8
b. 7
c. 8
d. no solution

Short answer:
95. Expand the following $(x-5)^{3}$
96. Graph the following:
a. $f(x)=|x|$

b. $f(x)=|x-2|+1$

c. $f(x)=3|x|$

97. Graph the following:
a. $f(x)=x^{3}$

98. Factor the following:
a. $8 x^{3}-16 x^{2}+32 x-64$
b. $x^{3}+3 x^{2}+9 x+27$
b. $f(x)=x^{3}-1$

c. $f(x)=-x^{3}+3$

