Final Exam Review 1st Semester Integrated

1.	Evaluate 5 <i>j</i> when $j = 7$.							
	a.	35	b.	40	c.	12	d.	84

2. Sally wants to plant some flowers in a cube-shaped planter box. If one edge of the box measures 10 inches, how much soil will be needed to fill the planter?

Name_

- a. 1000 in.^3 b. 100 in.^3 c. 333 in.^3 d. 600 in.^3
- 3. Complete the input-output table for the function y = 2x 3.

Input	Output
2	?
?	5
3	?
?	9

a.	Input	Output	с.	Input	Output
	2	3		2	1
	4	5		5	5
	3	4		3	3
	б	9		б	9
b.	Input	Output	d.	Input	Output
b.	Input 2	Output 1	d.	Input 2	Output 1
b.	-	-	d.	-	-
b.	2	1	d.	2	1

4. Make an input-output table for the function y = 2x + 4. Use *x*-values of 1, 2, 3, 4, and 5.

a.	Input, <i>x</i>	1	2	3	4	5	c. Input, x	1	2	3		4	5
	Output, y	б	8	10	12	14	Output, y	б	16	30	5	76	156
b.	Input, <i>x</i>	1	2	3	4	5	d. Input, x	1	2	3	4	5]
	Output, y	5	7	9	11	13	Output, y	5	б	7	8	9]

5. Which function rule matches the input-output table?

Input, <i>x</i> 1		2	3	4	5			
Output, y	7	11	15	19	23			
						_		
a. $y = 3 +$	5x	b.	y = 3 +	4 <i>x</i>	c.	y = 4 + 3x	d.	y = 2 + 4

6.A bag of chips costs 2.33. Your total grocery bill, *b*, is a function of the number of bags of chips, *n*, you purchase. Write an equation to represent this function.

a.
$$n = 2.33b$$

c. $\frac{b}{2.33} = n$

b.
$$b = \frac{2.33}{n}$$
 d. $b = 2.33n$

7. Which equation corresponds to the values in the table below?

	T .	- 1	•	2	4	-	7		
	Input, <i>x</i>	1	2	3	4	5	_		
	Output, y	17	26	35	44	53			
	a. $y = 8x + $	9	b. y =	= 9x + 7		c. y =	= 9x + 8	d.	y = 10x + 8
8.	For which va	lue of x i	s the rela	tion <i>not</i>	t a funct	ion?			
	$\{(0, 1), (x, 0)\}$								
	a. 1	, (0, 0), (b. 3			c. 4		d.	6
	u. 1		0. 5			U . T		u.	0
9.	Find the slop	e of the l	ine passi	ng throu	igh the p	points A	(-1, 1) and $B(4, -1)$	-5).	
	a. 6		b. 4	U	0 1	c. 3	,	d.	_5 _6
	a65		b. 4 3			4			-6
	5		5			•			U
10.	Find the slop	e of the l	ine that c	ontains	(-8, 2)	and (7,	-4).		
			b5	,	. /	c Û	<i>,</i>	d.	undefined
	a. $\frac{2}{-5}$,)		0. 0		u.	undermed
	5		4						
11.	What is the y	-intercen	t of the li	ine with	the equ	ation $4x$	x + 9y = -108?		
	a12	morep	b. 12			c2	-	d	27
	a12		0. 12			C2	. /	u.	21
12.	State the <i>x</i> - a	nd v-inte	rcepts of	the line	with th	e equatio	on $y = -2x + 4$.		
	a. <i>x</i> -interce					1	<i>v</i>		
	b. <i>x</i> -interce		-						
	c. <i>x</i> -interce								
	d. <i>x</i> -interce	pt: –2; y	-intercep	l: –4					
13.	Find the slope and y-intercept of the line with the equation $-9x + 3y = 54$.								

 a. m = 3, b = 18 c. m = -3, b = -18

 b. m = 18, b = 3 d. m = -18, b = -3

Consider lines whose equations have the form y = mx + 20. Find the difference of the *x*-intercepts of lines l_1 and l_2 if their slopes are m_1 and m_2 , respectively.

- 14. Which statement is always a correct conclusion about the values of x and y in the function y = x 3?
 - a. The value of *x* is always 3 less than the value of *y*.
 - b. The value of *y* is always less than the value of *x*.
 - c. When the value of *x* is positive, the value of *y* is also positive.
 - d. As the value of x increases, the value of y decreases.

15.Write the polynomial so that the exponents decrease from left to right.

 $6x^3 - 6x + 4x^5 - 2$

a. $4x^5 + 6x^3 - 6x - 2$ b. $-2 + 4x^5 - 6x + 6x^3$ c. $-4x^5 - 6x^3 + 6x + 2$ d. $2 - 4x^5 + 6x - 6x^3$

16. Find the degree of the polynomial $-3x^4 + 2x^3 + 7$.

17. A monthly phone bill, b(m), consists of a \$28 service fee plus \$0.13 per minute, *m*, of long distance calls, given by the function b(m) = 28 + 0.13m.

Draw a graph for up to and including 120 minutes of long distance calls made in a month. Estimate the bill if 84 minutes of long distance calls are made.

18. Classify the expression $-9v^9 - 7$ and state its degree.

- a. binomial, 9c. trinomial, 9b. binomial, 10d. trinomial, 10
- 19.Employees earn \$5 per hour plus \$0.75 for every unit they produce per hour. Which of the following shows both an equation in which *y* represents the employee's wages for producing *x* units per hour, and the graph of the wages earned for producing 2, 5, 8, and 10 units per hour?

Find the sum.

,

20.
$$(2a^7 + 3a^3 - 6) + (-2a^3 + 4 + 6a^7)$$

a. $8a^7 + a^3 - 2$
b. $a^7 + 8a^3 - 2$
c. $a^7 + 8a^3 + 2$
d. $8a^7 + a^3 + 2$

Simplify the expression.

21.
$$(5q^{5} + 4) - (2q^{3} + 9) + (6q^{5} - q^{3})$$

a. $11q^{5} - 3q^{3} - 5$
b. $-3q^{5} + 11q^{3} - 5$
c. $11q^{3} + 3q^{5} + 5$
d. $11q^{5} + 3q^{3} + 5$

22. Graph the linear equation 3x + 6y = 18 by finding the *x*- and *y*-intercepts.

5

23. Determine the slope of the line graphed below.

Find the difference.

24.
$$(6b^{3} + 3b^{2} + 8) - (2b^{3} - 8b^{2} + 6b - 5)$$

a. $4b^{3} + 11b^{2} - 6b + 13$
b. $4b^{3} + 11b^{2} + 6b - 13$
25. $(-4z^{4} - 4z^{3} - 6) - (-6z^{4} - 7z^{3} - 3)$
a. $2z^{4} + 3z^{3} - 3$
b. $-10z^{4} - 11z^{3} - 9$
C. $11b^{3} - 4b^{2} - 6b + 3$
d. $11b^{3} + 4b^{2} - 6b - 3$
C. $10z^{4} + 11z^{3} + 9$
d. $-2z^{4} - 3z^{3} + 3$

26. A rectangle has a length of x + 5 and a width of x - 7. Write an equation that describes the area, A, of the rectangle in terms of x. a. $A - x^2 - 2x - 35$

a.
$$A = x^2 - 2x - 35$$

b. $A = x^2 + 12x - 35$
c. $A = 2x - 2$
d. $A = 2x + 12$

Find the product.

27.
$$(x+5)(x+2)$$

a. $x^2 + 7x + 10$
b. $x^2 - 7x - 10$
28. $(4x+1)(4x-3)$
a. $16x^2 + 8x - 3$
b. $16x^2 - 8x + 3$
29. $(x+4)(x+7)$
a. $x^2 + 28$
b. $x^2 + 28x + 11$
30. $(x+5)(x^2 - 2x + 3)$
a. $x^3 + 3x^2 - 7x + 15$
b. $x^3 - 2x^2 + 15$
c. $x^2 - 7x + 10$
d. $x^2 - 7x + 10$
c. $x^2 - 7x - 10$
d. $x^2 - 8x - 3$
d. $16x^2 - 8x - 3$
d. $16x^2 - 8x - 3$
d. $16x^2 - 16x - 3$
29. $(x+4)(x+7)$
a. $x^2 + 28x$
c. $x^2 + 11x + 28$
d. $x^2 + 28x + 28$
30. $(x+5)(x^2 - 2x + 3)$
a. $x^3 - 2x^2 + 15$
c. $x^3 + 3x^2 - 10x + 15$
d. $x^2 - 3x + 15$

31.
$$(x+7)(x^2-4x+2)$$

a. $x^3+3x^2-26x+14$
b. $x^3+11x^2-26x+14$
32. $(6y^2+3y+2)(y-7)$
a. $6y^3-39y^2-19y-14$
b. $6y^3-45y^2-19y+14$
c. $6y^3-39y^2-21y-14$
d. $6y^3-39y^2-21y-14$
d. $6y^3-45y^2-21y+14$

33. The equation $y = \frac{2}{5}x + 3$ is graphed below. Which graph shows the result of changing the 3 in the equation to -1?

34. Write a variable expression for the area of the rectangle.

35. A rectangular garden, with length four times its width, is to be expanded so that both sides are increased by 3 yards.

Let x represent the original width of the garden. Write an expression that models the area of the expanded garden.

	Let x represent the original width of the garden	. w	rite an expression in
	a. $5x + 6$	c.	$4x^2 + 9$
	b. $4x^2 + 6x + 9$	d.	$4x^2 + 15x + 9$
	Find the product.		
36.	$\left(5x^2-5\right)^2$		
	a. $25x^4 - 25$	c.	$25x^4 - 50x^2 + 25$
	b. $25x^2 - 10x + 25$	d.	$25x^4 - 50x^2 - 25$
37.	(5c + 6)(5c - 6)		
	a. $25c^2 - 36$		25 <i>c</i> ² + 60 <i>c</i> - 36
	b. $25c^2 + 36$	d.	$25c^2 + 60c + 36$
38.	$(2\nu + 5)(2\nu - 5)$		
	a. $4v^2 - 25$		$4v^2 + 20v - 25$
	b. $4v^2 + 25$	d.	$4v^2 + 20v + 25$

Find the missing term.

39.	(<i>x</i> ·	$(+9)^2 = x^2 + 18x + \$		
	a.	81	c.	72
	b.	27	d.	90

Factor the polynomial.

40.
$$x^2 + 6x + 5$$

 a. $(x+1)(x-5)$

 b. $(x-1)(x-5)$

 c. $(x+1)(x+5)$

 d. $(x-1)(x+5)$

- 41. The volume of a cylinder is given by the formula $V = \pi r^2 h$, where *r* is the radius of the base of the cylinder and *h* is the height of the cylinder. If the radius of the cylinder is increased by 1 unit and the height remains the same, the ratio for the volume of the new cylinder to the volume of the original cylinder is 4:1. Find the length of the radius of the original cylinder.
 - a. 2 unitsc. 3 unitsb. 1 unitd. 4 units

Solve the equation.

42.	$16g^2 + 40g + 25 = 0$		
	a. 4	c.	5
	$g = -\frac{1}{5}$		$g = -\frac{1}{4}$
	b. 4	d.	5
	$g = \frac{1}{5}$		$g = \overline{4}$

Solve the equation.

43.
$$x^3 + 4x^4 - 25x - 100 = 0$$

 a. -4, 25
 c. 4, 5

 b. -5, 4, 5
 d. -4, -5, 5

47. How would you translate the graph of $y = -x^2$ to produce the graph of $y = -x^2 - 4$?

- a. translate the graph of $y = -x^2$ down 4 units
- b. translate the graph of $y = -x^2$ up 4 units
- c. translate the graph of $y = -x^2$ left 4 units
- d. translate the graph of $y = -x^2$ right 4 units

- 48. Predict how the graph of the equation $y=7x^2$ will compare with the graph of the equation $y = x^2$.
 - a. The graph of $y=7x^2$ will open down because coefficient is positive. The graph will be narrower because 7 is greater than 1.
 - b. The graph of $y=7x^2$ will open up because the coefficient is positive. The graph will be narrower because 7 is greater than 1.
 - c. The graph of $y=7x^2$ will open down because coefficient is positive. The graph will be wider because 7 is greater than 1.
 - d. The graph of $y=7x^2$ will open up because the coefficient is positive. The graph will be wider because 7 is greater than 1.
- 49. Sketch the graph of the equation $y=0.75x^2$.

50. Sketch the graph of the equation $y = -\frac{5}{7}x^2$.

c

- 51. How would you change the graph of $y = x^2$ to produce the graph of $y = x^2 5$?
 - a. shift the graph of $y = x^2$ right 5 units
 - b. shift the graph of $y = x^2$ down 5 units
 - c. shift the graph of $y = x^2$ up 5 units
 - d. shift the graph of $y = x^2$ left 5 units

58.Graph the radical function $y = \sqrt{x-1}$ and then find the domain and range.

a.
$$\frac{7}{50}$$
 b. $\frac{3}{4}$ c. $\frac{7}{100}$ d. $\frac{7}{10}$
60. What is the simplified form of $2\sqrt{7} - (-8\sqrt{7}) - 3\sqrt{7}$
a. $13\sqrt{7}$ b. 49 c. $7\sqrt{7}$ d. $\sqrt{49}$

61. Which function matches the graph?

	a. $f(x) = \sqrt{x+4} + 4$ b. $f(x) = \sqrt{x-4} + 4$		c. $f(x) = \sqrt{x-4} - 4$ d. $f(x) = \sqrt{x+4} - 4$	ł
	Simplify:			
62.	$\sqrt{10} \sqrt{4}$ a. $2\sqrt{10}$ b. $4\sqrt{5}$		c. $2\sqrt{5}$ d. $\sqrt{40}$	
63.	$\sqrt{30} \cdot \sqrt{12}$ a. 9 $\sqrt{20}$	b. _{12√10}	c. _{6√10}	d. 3√40
64.	11√25 a. 137.5	b. 16	c. 55	d. 27.5
	Simplify:			
65.	7√6+8√6-3√6 a. √72	b. _{12√6}	c. 72	d. 18√6
66.	$\sqrt{32} + \sqrt{72}$ a. $2\sqrt{10}$	b. 46√2	c. $\sqrt{104}$	d. $10\sqrt{2}$
67.	$2\sqrt{6} - \sqrt{81} - 4\sqrt{24}$ a. $-6\sqrt{6} - 9$ b. $-11\sqrt{6} - 9 - 4\sqrt{2}$	-4	c. $-5\sqrt{24}$ d. $-15\sqrt{6}$	

68.A bridge over a stream in a garden is to be braced as shown in the figure below. The contractor determines that each of the identical braces must be $3\sqrt{2}$ feet long.

	Wł	nat is the approxima	te to	tal length of all 4 br	aces	?		
	a.	8.5 feet	b.	17.0 feet	c.	24.0 feet	d.	9.8 feet
69.	Sir	nplify the expression	n √	500.				
	a.	50\sqrt{10}	b.	10√5	c.	$5\sqrt{10}$	d.	$10\sqrt{50}$

Solve:

70.	$\sqrt{x+3} = -6$	
	a. 33	c. no real number solutions
	b. 33, -39	d39

Solve:

a.

71. $\sqrt{x+9} - 9 = 2$ a. 112 b. no solution c. -68 d. -16 72. $\sqrt{6x+4} = 25$ 207 a. 207 209 c. 2 2 ' 2 b. d. 599 1 6 6 73. $\sqrt{x+72} = x$

74. Graph the rational function $f(x) = \frac{1}{x-1}$. Then find its domain and range.

Domain: all real numbers except 1 Range: all real numbers except 1

b.

Domain: all real numbers except -1 Range: all real numbers except 1

Domain: all real numbers except 1 Range: all real numbers except 0

Divide:

75.
$$\frac{x^{2} + 5x + 3}{x}$$
a.
$$x + 5 + \frac{3}{x}$$
b.
$$x + 5$$
c.
$$x^{2} + 5 + \frac{3}{x}$$
d.
$$x + 3$$

76.
$$(k^3 + 8) \div (k + 2)$$

 a. $k^2 - 2k + 4$

 b. $k^2 - 4$

 c. $k^2 + 8k + 4$

 d. $k^2 + 4$

77.
$$\frac{b^2 - 3b + 3}{b - 5}$$

a.
$$2b - 2 + \frac{7}{b - 5}$$

b.
$$b + 2 + \frac{13}{b - 5}$$

c.
$$b - 8 + \frac{49}{b - 5}$$

d.
$$b + 2 + \frac{-13}{b - 5}$$

78.
$$\frac{d^2 + 5d - 5}{d + 3}$$

a. $d + 2$, remainder -11
b. $d + 2$, remainder 11

79. Divide
$$-2x^3 - 4x - 3$$
 by $x - 2$.
a. $-2x^2 - 4x - 12 - \frac{27}{x - 2}$
b. $-2x^2 - 4x - 13 - \frac{25}{x - 2}$

80. Divide
$$24x^2 - 9x^3 + 12 - 27x$$
 by $3x - 5$.
a. $-3x^2 + 3x - 4 - \frac{8}{3x - 5}$
b. $-3x^2 + 3x - 9 - \frac{2}{x - 5}$

Simplify:

82.
$$\frac{-3x + 3x^{2}}{-24x + 24}$$

a. $-\frac{x}{8}$
b. $\frac{x - x^{2}}{8x - 8}$

c. d + 8, remainder 49 d. 2d - 2, remainder -1

c.
$$-2x^2 - 4x - 13 - \frac{12}{x - 2}$$

d. $-2x^2 - 4x - 12 + \frac{27}{x - 2}$

c.
$$-3x^2 + 3x - 9 - \frac{16}{x - 5}$$

d. $-3x^2 + 3x - 4 + \frac{8}{x - 5}$

c.

d.

 $\frac{x^2}{16}$

 $\frac{1-x}{16}$

Find the product.

83.
$$\frac{4y^{2}}{3} \cdot \frac{9}{12y}$$
a. y
b. $2 \\ 9^{y^{2}}$
c. $12y$
d. 1
d. 1
expression 4
84. $(x-2) \cdot \frac{x+4}{x^{2}-4}$
a. $\frac{x+4}{x+2}$
c. $\frac{x+4}{x-2}$

b.
$$\frac{x+2}{(x-2)(x^2-4)}$$
 d. 2

Find the quotient.

85.
$$\frac{x+4}{x-4} \div \frac{x^2 - 16}{4-x}$$

a. $\frac{x+4}{x-4}$
b. $\frac{1}{4-x}$
c. $\frac{1}{x-4}$
d. $\frac{1}{2-x}$

Find the difference.

86.
$$\frac{c+2}{d} - \frac{c-1}{d}$$
a.
$$\frac{1}{d}$$
b.
$$\frac{3}{d}$$
c.
$$\frac{2c+3}{d}$$
d.
$$\frac{2c+1}{d}$$

87.
$$\frac{5}{x+3} - \frac{9}{x-3}$$

a.
$$\frac{-4x-42}{x^2-9}$$

b.
$$\frac{-4}{x-3}$$

c.
$$\frac{1}{x^2-9}$$

d.
$$\frac{-4x-42}{x+3}$$

88.
$$\frac{5}{x^2 - 15x + 56} - \frac{2}{x - 7}$$

a.
$$\frac{3}{x^2 - 16x + 63}$$

b.
$$\frac{-2x - 3}{x^2 - 15x + 56}$$

c.
$$\frac{-2x + 21}{x^2 - 15x + 56}$$

d.
$$\frac{-2x - 11}{x^2 - 15x + 56}$$

Find the sum.

89.
$$\frac{4}{x+9} + \frac{3}{x-9}$$

a. $\frac{7}{x+9}$
b. $\frac{7x-9}{x^2-81}$
c. $\frac{7}{x^2-81}$
d. $\frac{7x-9}{7}$

90. The production rate of a small factory is modeled by $\frac{x+21}{2x(x+5)}$, while the production rate of another factory is

modeled by $\frac{9x+16}{2x(x+5)}$. Which is a model for the combined production rate of the two factories?

a.
$$\frac{x+21}{9x+16}$$

b. $\frac{10x+37}{2x^2+10}$
c. $\frac{10x+37}{2x(x+5)}$
d. $\frac{9x^2+37}{2x^2+10}$

Solve the equation:

91.	$\frac{x-6}{x-3} = \frac{x+8}{x-2}$		
	a. 36	c.	12
	13 b. 12	4	4
	13	d.	4
	10		

92.
$$\frac{1}{w+3} - \frac{3}{w-2} = 0$$

a. $\frac{-11}{2}$
b. $\frac{-7}{2}$
c. 11
d. none of these

Solve the equation and check your answer.

93.
$$\frac{x}{x-8} + \frac{6}{x-4} = \frac{x^2}{x^2 - 12x + 32}$$

a. 20 b. 8 c. 24 d. 27
94. $\frac{x}{x^2 - 49} + \frac{7}{x-7} = \frac{1}{x+7}$
a. -8 b. 7 c. 8 d. no solution

Short answer:

95. Expand the following $(x - 5)^3$

96. Graph the following:

97. Graph the following:

c. f(x) = 3|x|

98. Factor the following:

a. $8x^3 - 16x^2 + 32x - 64$

b.
$$x^3 + 3x^2 + 9x + 27$$